CONTINUOUS PROBABILITY DISTRIBUTION

This is a distribution which takes on any value within a given interval.

Summary:

A probability density function ($\mathbf{p} \cdot \mathbf{d} \cdot \mathbf{f}$) is a function that defines the probability of an event to occur.

A continuous p·d·f f(x) defined over the interval $\mathbf{a} \le \mathbf{x} \le \mathbf{b}$ is such that:

(a) The total area under f(x) = sum of all probabilities = 1.

$$\Rightarrow \int_{\mathbf{a}}^{\mathbf{b}} f(x) \, \mathbf{dx} = \mathbf{1}.$$

(b)
$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f(x) dx$$
.

NOTE:

- (i) The values of $P(x_1 < X < x_2)$, $P(x_1 \le X < x_2)$, $P(x_1 < X \le x_2)$ and $P(x_1 \le X \le x_2)$ are the same.
- (ii) The values $P(X = x_1) = P(X = x_2) = 0$ since X deals with a range of values

(c) Expectation,
$$E(X) = \int_{a}^{b} xf(x) dx$$
.

(d) Variance, $Var(X) = E(X^2) - E^2(X)$.

where
$$\mathbf{E}(\mathbf{X}^2) = \int_{\mathbf{a}}^{\mathbf{b}} x^2 f(x) dx$$
, $\mathbf{E}^2(\mathbf{X}) = [\mathbf{E}(\mathbf{X})]^2$.

- (e) Standard deviation $\sigma = \sqrt{\text{variance}}$
- (f) For a continuous $r \cdot v \mathbf{X}$ and constants \mathbf{a} and \mathbf{b} ,

(i) E(a) = a	Var(a) = 0
(ii) $E(aX) = aE(X)$	$Var(aX) = a^2Var(X)$
(iii) E(aX + b) = aE(X) + b	$Var(aX + b) = a^2Var(X)$

(g) Median is the value **m** which satisfies the relation $\int_{a}^{m} f(x) dx = 0.5.$

I⋅**e** The median encloses an area of **0**⋅**5** below it.

(h) Lower quartile is the value \mathbf{q}_1 which satisfies the relation $\int_{\mathbf{q}_1}^{\mathbf{q}_1} f(x) \, \mathbf{dx} = \mathbf{0} \cdot \mathbf{25}.$

I⋅e The lower quartile encloses an area of **0**⋅25 below it.

(I) Upper quartile is the value \mathbf{q}_3 which satisfies the relation $\int_{\mathbf{q}_3}^{\mathbf{q}_3} f(x) \, d\mathbf{x} = \mathbf{0} \cdot \mathbf{75}.$

I⋅**e** The upper quartile encloses an area of **0**⋅**75** below it.

(j) Interquartile range = $Q_3 - Q_1$

(k) The J^{th} percentile is the value p that satisfies the relation $\int_{a}^{p} f(x) dx = \frac{J}{100}.$

NOTE: The median, quartiles and percentiles of a $p \cdot d \cdot f$ defined over different intervals are obtained by first investigating the interval in which they are located.

- (L) The graph of the $p \cdot d \cdot f(x)$ can either be linear or a curve.
- (m) Mode is value of x at which the p·d·f f(x) attains its maximum value. The graph of f(x) gives the location of the mode. If the p·d·f f(x) is non linear, the value x at which f(x) has a maximum value occurs when $f^{1}(x) = 0$ provided $f^{11}(x) < 0$.

EXAMPLES:

1. The p·d·f of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is given by:

$$f(x) = \begin{cases} \beta x & , & 0 \le x \le 1 \\ \frac{1}{2}\beta(3-x) & , & 1 < x < 3 \\ 0 & , & \text{otherwise} \end{cases}$$

Find:

- (i) the value of β
- (ii) P(X = 2)
- (iii) P(X < 2)
- (iv) P(X > 1.4)

(v) P(0.8 < X < 2)

(vi) P(|X-1|<0.6)

(vii) P(|X-1| > 0.6)

(viii) $P(0.2 < X < 2.5/X \ge 0.7)$

(ix) the mode, mean and standard deviation of X.

(x) E(3X + 5)

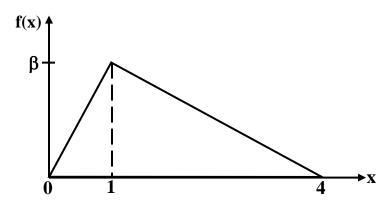
(xi) Var(3X + 5)

(xii) the median and semi-interquartile range of X.

(xiii) the value of **b** such that $P(X \le b) = 0.6$.

(xiv) the 30^{th} to 80^{th} percentile range of X.

2. The p·d·f f(x) of a r·v X takes on the form shown in the sketch below:



Find the:

(i) value of β

(ii) equations of the $p \cdot d \cdot f$

(iii) P(0.5 < X < 2)

(iv) mean of X.

(v) median of X.

3. The p·d·f of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is such that:

$$f(x) = \begin{cases} \beta x (6-x)^2, & 0 < x < 6 \\ 0, & \text{otherwise} \end{cases}$$

Find the:

- (i) value of β
- (ii) mode of X
- (iii) mean of X

4. The outputs of **9** machines in a factory are independent random variables each with probability density function given by

$$f(x) = \begin{cases} \beta x & \text{, } 0 \le x \le 10 \\ \beta(20-x) & \text{, } 10 \le x \le 20 \\ 0 & \text{, otherwise} \end{cases}$$

Find the:

- (i) value of β .
- (ii) expected value and variance of the output of each machine.

 Hence or otherwise find the expected value and variance of the total output from all machines.

5. The mass **X** kg of maize flour produced per hour is modeled by a continuous r·v whose p·d·f is given by:

$$f(x) = \begin{cases} \beta x^2 & , & 0 \le x \le 2 \\ \beta (6-x) & , & 2 \le x \le 6 \\ 0 & , & \text{otherwise} \end{cases}$$

- (a) Sketch the $p \cdot d \cdot f$ of **X**. Hence state the mode of **X**
- (b) Find the:
 - (i) value of β

(ii)
$$P(|X-3|<2)$$

- (iii) mean mass produced per hour
- (c) Given that maize flour is sold at **sh 2400** per kg and the cost of running the production is **sh 200** per hour, taking **shs Y** as the profit made per hour.
 - (i) Express Y in terms of X.
 - (ii) Find the expected value of Y.
- **6.** A $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$

$$f(x) = \begin{cases} \beta x & \text{, } 1 \le x \le 3 \\ \lambda(4-x) & \text{, } 3 < x \le 4 \\ 0 & \text{, otherwise} \end{cases}$$

- (a) Show that $\lambda = 3\beta$.
- **(b)** Find :

- (i) the values of β and λ
- (ii) the mean and variance of X
- (iii) the median of X
- (iv) $P(3 \le X \le 4/X > 2)$
- 7. A r·v X has the following p·d·f.

$$f(x) = \begin{cases} \frac{2}{13}(x+1) & , & 0 \le x \le a \\ \frac{2}{13}(5-x) & , & a < x < b \\ 0 & , & \text{otherwise} \end{cases}$$

Find the:

- (i) values of **a** and **b**.
- (ii) median of X.
- (iii) $P(X > 0.5/0.25 \le X \le 1)$

CUMULATIVE DISTRIBUTION FUNCTION F(x)

This function gives the accumulated probability up to x. It is obtained by

integrating the p·d·f as follows:
$$\mathbf{F}(\mathbf{x}) = \mathbf{P}(\mathbf{X} \leq \mathbf{x}) = \int_{-\infty}^{\mathbf{X}} f(t) \, dt$$
.

The cumulative distribution function is sometimes known as a distribution function

PROPERTIES OF F(x)

- (i) F(x) must be defined over the interval $-\infty \le x \le \infty$.
- (ii) $0 \le F(x) \le 1$, for all values of x.

(iii)
$$P(x_1 < X < x_2) = P(X \le x_2) - P(X \le x_1) = F(x_2) - F(x_1)$$

(iv) The median, ${\bf m}$, lower quartile, ${\bf q_1}$, and upper quartile ${\bf q_3}$ are the values for

which
$$F(m) = \frac{1}{2}$$
, $F(q_1) = \frac{1}{4}$ and $F(q_2) = \frac{3}{4}$ respectively.

(v)
$$P(X \le x) + P(X > x) = 1$$

.. The complementary cumulative distribution function

$$P(X > x) = 1 - P(X \le x) = 1 - F(x)$$

(vi) The p·d·f f(x) can be obtained by differentiating the cumulative distribution

$$\therefore F^{1}(x) = p \cdot d \cdot f(x)$$

EXAMPLES:

1. The p·d·f of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is given by:

$$f(x) = \begin{cases} \beta(x-1) & \text{, } 1 < x \le 3 \\ \frac{1}{2}\beta(7-x) & \text{, } 3 < x \le 7 \\ 0 & \text{, otherwise} \end{cases}$$

Find:

- (i) the value of β , hence f(x)
- (ii) the cumulative distribution function F(x) and sketch it.
- (iii) P(2.8 < X < 5.2)
- (iv) P(X > 4)
- (v) the median of X.
- (vi) the interquartile range of X
- (vii) the 20^{th} percentile of X.

Solution:

(ii) Note: F(x) is concave up parabola over the interval $1 < x \le 3$ and concave down parabola over the interval $3 < x \le 7$.

2. A continuous $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$.

$$f(x) = \begin{cases} k(3-x) & , & 1 \le x \le 2 \\ k & , & 2 < x \le 3 \\ k(x-2) & , & 3 < x \le 4 \\ 0 & , & \text{otherwise} \end{cases}$$

- (a) Sketch f(x), hence deduce the mean and median of X.
- (b) Find:
 - (i) the value of k.
 - (ii) the cumulative distribution function F(x) and sketch it.
 - (iii) $P(X \ge 3.5/3 \le X \le 4)$

3. The distribution function of a continuous $\mathbf{r} \cdot \mathbf{v} X$ is as follows:

$$P(X \le x) = \begin{cases} 0 & , & x \le 1 \\ \frac{1}{12}(x-1)^2 & , & 1 < x \le 3 \\ \frac{1}{24}(\beta x + \lambda - x^2) & , & 3 < x \le 7 \\ 1 & , & x > 7 \end{cases}$$

Find:

- (i) the values of β and λ
- (ii) $P(X \leq 4)$
- (iii) the median of X
- (iii) the $p \cdot df$ of X
- (iv) the mean, μ of the distribution

(v)
$$P(|X - \mu| > 0.8)$$

4. The cumulative distribution of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is such that:

$$F(x) = \begin{cases} 0 & , & x < 0 \\ 2x - 2x^2 & , & 0 \le x \le 0 \cdot 25 \\ \beta + x & , & 0 \cdot 25 < x \le 0 \cdot 5 \\ \alpha + 2x^2 - x & , & 0 \cdot 5 < x \le 0 \cdot 75 \\ 1 & , & x > 0 \cdot 75 \end{cases}$$

Find:

(i) the values of β and α , hence sketch F(x).

(ii)
$$P(|X - 0.375| < 0.25)$$

- (iii) the p·d·f of X and sketch it, hence deduce the mean and median of X.
- 5. A continuous r·v X is distributed as follows:

$$P(X>x) = a + bx^3 \quad , \quad 0 \le x \le 4$$

- (i) By first finding the cumulative distribution of **X** or otherwise, find the values of **a** and **b**.
- (ii) Show that E(X) = 3, and find the standard deviation σ of X.

UNIFORM DISTRIBUTION

This distribution is sometimes called a rectangular distribution.

Summary:

If a $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $[\mathbf{a}, \mathbf{b}]$, then:

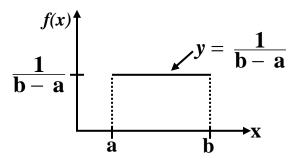
(i) the p·d·f of X is given by: $f(x) = \begin{cases} \frac{1}{b-a} & \text{, } a \le x \le b \\ 0 & \text{, otherwise} \end{cases}$

(ii) the mean of X is $\frac{a+b}{2}$.

(iii) the variance of X is $\frac{(b-a)^2}{12}$.

(iv) the median of X is $\frac{a+b}{2}$.

(v) the graph of f(x) is as follows:



EXAMPLES:

1. A $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $[\mathbf{a}, \mathbf{b}]$.

(a) State the $p \cdot d \cdot f$ of X and sketch it.

(b) Show that:

(i) the mean of X is $\frac{a+b}{2}$.

(ii) the variance of X is $\frac{(b-a)^2}{12}$.

(iii) the median of X is $\frac{a+b}{2}$.

(c) Find the cumulative distribution function of X and sketch it.

- 2. (a) A $\mathbf{r} \cdot \mathbf{v}$ X is uniformly distributed over the interval [2, 5]. Find $\mathbf{P}(\mathbf{X} \geq 2 \cdot 3/\mathbf{X} \leq 4 \cdot 5)$
 - (b) The number of vehicles crossing a roundabout take on a $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ with uniformly distribution over the interval $[\mathbf{x}_1, \mathbf{x}_2]$. If the expected number of vehicles crossing the roundabout is 15 with variance 3, calculate the:
 - (i) values of x_1 and x_2 .
 - (ii) probability that at least 14 vehicles cross the roundabout.
 - (iii) probability that the number of vehicles crossing the roundabout lies within one standard deviation of the mean.

EER:

1. The p·d·f of a continuous r·v \mathbf{X} is given by

$$f(x) = \begin{cases} \beta(1-x^2) & , & 0 \le x \le 1 \\ 0 & , & \text{otherwise} \end{cases}$$

Find:

- (i) the value of β .
- (ii) the mean, μ and standard deviation, σ of X.
- (iii) E(8X + 3) and Var(8X + 3)
- (iv) $P(|X \mu| \leq \sigma)$

[Ans: (i) 1.5 (ii) 0.375, 0.2437 (iii) 6, 3.8 (iii) 0.6145]

2. The p·d·f of a continuous r·v X is given by

$$f(x) = \begin{cases} \frac{2}{3}x & , & 0 \le x \le 1\\ \frac{1}{3}(3-x) & , & 1 \le x < 3\\ 0 & , & \text{otherwise} \end{cases}$$

- (a) Show that f(x) represents a probability density function.
- (b) Find the:
 - (i) median of X
 - (ii) 80^{th} percentile of X.
 - (iii) value of **b** such that $P(X \le b) = 0.6$.
 - (iv) expressions for $P(X \le x)$ and sketch it.

[Ans: b(i) 1.2679 (ii) 1.9046 (iii) 1.4508]

3. The p·d·f of a continuous r·v **X** is given by

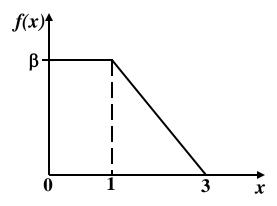
$$f(x) = \begin{cases} \beta x - \alpha x^2 & , & 0 \le x \le 2 \\ 0 & , & \text{otherwise} \end{cases}$$

Given that the mean of X is 1, find the:

- (i) values of β and α .
- (ii) variance of X
- (iii) mode of X

[Ans: (i) 1.5, 0.75 (ii) 0.2 (iii) 1]

4. The p·d·f f(x) of a $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ takes on the form shown in the sketch below:



Find:

- (i) the value of β
- (ii) the equations of the $p \cdot d \cdot f$
- (iii) the mean of X.

(iv) P(
$$|X-1\cdot 25| < 0\cdot 75$$
)

(v)
$$P(0 \cdot 2 < X < 1 \cdot 5/X \ge 0 \cdot 6)$$

[Ans: (i)
$$\frac{1}{2}$$
 (iii) 1.0833 (iv) 0.625 (v) 0.5982]

- 5. A r·v X is uniformly distributed with mean 7·5 and variance 0·75 over the interval [a, b]. Find:
 - (i) the values of a and b.
 - (ii) the $p \cdot d \cdot f$ of the distribution.
 - (iii) $P(7 \cdot 2 \leq X \leq 8 \cdot 4)$
 - (iv) 80th percentile of X.
 - (v) probability that X lies within one standard deviation of the mean.
 - (vi) cumulative distribution function of X.

[Ans: (i) 6, 9 (iii)
$$0.4$$
 (iv) 8.4 (v) 0.5774]

6. The time taken to perform a particular task **t hours** is given by the $p \cdot d \cdot f$:

$$f(t) = \begin{cases} 10\beta t^2 & , & 0 \le t \le 0.6 \\ 9\beta(1-t) & , & 0.6 < t < 1 \\ 0 & , & otherwise \end{cases}$$

- (a) Find the:
 - (i) value of β
 - (ii) most likely time.
 - (iii) expected time.
- (b) Determine the probability that the time will be:
 - (i) more than 48 minutes.
 - (ii) between 24 and 48 minutes.

[Ans: (a) (i)
$$\frac{25}{36}$$
 (ii) 0.6 (iii) 0.591 (b) (i) 0.125 (ii) 0.727]

7. A continuous r·v \mathbf{X} has the following p·d·f

$$f(x) = \begin{cases} \beta(x - \frac{1}{k}), & 0 \le x \le 3 \\ 0, & \text{otherwise} \end{cases}$$

Given that P(X > 1) = 0.8, find the:

- (i) values of k and β .
- (ii) probability that X lies between 0.5 and 2.5
- (iii) mean of X

[Ans: (i)
$$-1$$
, $\frac{2}{15}$ (ii) 0.6667 (iii) 1.8]

8. A continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ has the following $\mathbf{p} \cdot \mathbf{d} \cdot \mathbf{f}$:

$$f(x) = \begin{cases} \beta x^2 & , & 0 \le x \le 2 \\ \beta (6-x) & , & 2 \le x \le 6 \\ 0 & , & \text{otherwise} \end{cases}$$

- (a) Sketch f(x)
- (b) Find:
 - (i) the value of β .
 - (ii) the median of X.

(iii)
$$P(\mid X - 2.75 \mid < 1.25)$$

[Ans: b(i)
$$\frac{3}{32}$$
 (ii) 2.734 (iii) 0.7070]

9. A continuous $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$

$$f(x) = \begin{cases} k, & 0 \le x \le 2 \\ k(2x - 3), & 2 \le x \le 4 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Sketch f(x)
- (b) Find:
 - (i) the value of k.
 - (ii) the mean and variance of X.
 - (iii) $P(X \ge 2.5)$
 - (iv) $P(1 \le X \le 2 \cdot 5)$
 - (v) $P(0 < X < 2/X \ge 1)$

[Ans: (i)
$$\frac{1}{4}$$
 (ii) $\frac{43}{24}$, 0.8316 (iii) 0.3125 (iv) 0.4375 (v) $\frac{1}{3}$]

10. The cumulative distribution of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is such that:

$$F(x) = \begin{cases} 0 & , & x \le 1 \\ \beta(x-1)^2 & , & 1 < x \le 3 \\ \alpha(14x-x^2-25) & , & 3 < x \le 7 \\ 1 & , & x > 7 \end{cases}$$

Find:

(i) the values of β and α .

(ii)
$$P(2.8 \le X \le 5.2)$$

- (iii) the median of X
- (iv) the $p \cdot d \cdot f$ of **X** and sketch it.
- (v) the mean, μ of X.

(vi) P(
$$X-~\mu~|~>~0\cdot8)$$

[Ans: (i)
$$\frac{1}{12}$$
, $\frac{1}{24}$ (ii) 0.595 (iii) 3.45 (v) $\frac{11}{3}$ (vi) 0.5578]

- 11. The number of boats **X** crossing a river is uniformly distributed between 150 and 210.
 - (a) State the p·d·f of the distribution.
 - **(b)** Find the:
 - (i) probability that between 170 and 194 boats cross the river.
 - (ii) expected number of boats to cross the river.
 - (iii) standard deviation for the distribution.

[Ans:
$$b(i) 0.4$$
 (ii) 180 (iii) 7.7460]

12. The cumulative distribution of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is such that:

$$F(x) = \begin{cases} 0 & \text{, } x \leq 1 \\ 0.5(x^2 - 2x + 1) & \text{, } 1 < x \leq 2 \\ \beta x + \lambda x^2 - 3.5 & \text{, } 2 < x \leq 3 \\ 1 & \text{, } x > 3 \end{cases}$$

Find:

(i) the values of β and λ . Hence sketch F(x)

(ii)
$$P(1.5 < X < 2.5/X > 2)$$

(iii) the p·d·f of X and sketch it. Hence deduce the mean, mode and median

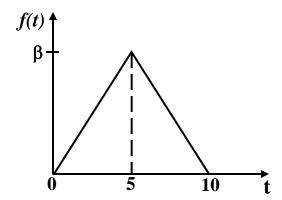
[Ans: (i)
$$3$$
, -0.5 (ii) 0.75 (iii) $2, 2, 2$]

13. A continuous $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$.

$$f(x) = \begin{cases} k(3-x) & , & 1 \le x \le 2 \\ k & , & 2 < x \le 3 \\ k(x-2) & , & 3 < x \le 4 \\ 0 & , & \text{otherwise} \end{cases}$$

- (a) Sketch f(x), hence deduce the mean and median of X.
- (b) Find:
 - (i) the value of k.
 - (ii) $P(X \ge 3.5/3 \le X \le 4)$
 - (iii) the 80^{th} percentile of X.

14. The time, **T**, taken to complete a certain task can be modeled as in the diagram below, where **t** is the time in minutes.



Determine the:

- (i) value of β
- (ii) equations of the $p \cdot d \cdot f$
- (iii) E(T)
- (iv) probability that the task will be completed between ${\bf 4}$ and ${\bf 7}$ minutes.
- (v) probability that the task will be completed in less than 2 minutes

[Ans: (i) 0.2 (iii) 5 (iv) 0.5 (v) 0.08]

15. A r·v \mathbf{X} is uniformly distributed with variance 6.75 over the interval

 $3 \le x \le b$. Find:

- (i) the value of b.
- (ii) the $p \cdot d \cdot f$ of the distribution.

(iii)
$$P(5 < X < 9/X \ge 7)$$

[Ans: (i) 12 (iii) 0.4]

16. A $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $[\mathbf{a}, \mathbf{b}]$.

- (a) State the $p \cdot d \cdot f$ of X and sketch it.
- (b) Show that:
 - (i) the mean of X is $\frac{a+b}{2}$.
 - (ii) the variance of X is $\frac{(b-a)^2}{12}$.
 - (iii) the median of X is $\frac{a+b}{2}$.
- (c) Find the cumulative distribution function of X and sketch it.
- 17. A $r \cdot v$ X has the following cumulative distribution function

$$F(x) = \begin{cases} 0 & , x < a \\ \frac{x-a}{b-a} & , a \le x \le b \\ 1 & , x > b \end{cases}$$

- (a) Sketch **F**(**x**)
- (b) Find the p·d·f of X. Hence show that the variance of X is $\frac{(b-a)^2}{12}$.

18. A r·v X is uniformly distributed with lower quartile 5 and upper quartile9 in the interval [a, b]. Find the:

- (i) values of a and b.
- (ii) $P(6 \le X \le 7)$
- (iii) probability that \mathbf{X} lies within one standard deviation of the mean.
- (iv) cumulative distribution function of X.

[Ans: (i) 3, 11 (ii) 0·125 (iii) 0·5774]

19. The p·d·f of a r·v \mathbf{X} is given by:

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{5} & , & 0 \le x \le 5 \\ 0 & , & otherwise \end{array} \right.$$

- (i) Identify the distribution
- (ii) Find $P(|X \mu| < \sigma)$ where μ and σ is the mean and standard deviation of X respectively.

20. The life time in years of a battery is known to be uniformly distributed with mean 4 and variance $\frac{4}{3}$, issued with a three years guarantee. If two such batteries are picked at random, find the probability that both will be replaced under the guarantee.

21. A r·v **X** has the following p·d·f.

$$f(x) = \begin{cases} 3x^{\mathbf{a}} & , & 0 \le x \le 1 \\ 0 & , & \text{otherwise} \end{cases}$$

Find the:

- (i) value of a.
- (ii) median of X.

22. A r·v \mathbf{X} has the following cumulative distribution function

$$F(x) = \begin{cases} 0 & \text{, } x < 0 \\ \frac{1}{32}(x^4 - 8x^3 + \beta x^2), & 0 \le x \le 4 \\ 1 & \text{, } x > 4 \end{cases}$$

Find:

(i) the value of β .

- (ii) P(X < 2)
- (iii) the $p \cdot d \cdot f$ of X
- (iv) the mode of the distribution

23. The cumulative distribution of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is such that:

$$F(x) = \begin{cases} 0 & , & x \le 0 \\ 0 \cdot 25x^2 & , & 0 < x \le 1 \\ \beta x + \alpha & , & 1 < x \le 2 \\ 0 \cdot 25(5 - x)(x - 1), & 2 < x \le 3 \\ 1 & , & x > 3 \end{cases}$$

Find:

- (i) the values of β and α .
- (ii) $P(3 \le 2X \le 5)$
- (iii) the $p \cdot d \cdot f$ of X and sketch it.
- (iv) the mean, μ of X.

[Ans: (i)
$$0.5$$
, -0.25 (ii) 0.4375 (iv) 1.5]

24. A continuous $r \cdot v \mathbf{X}$ is distributed as follows:

$$P(X>x)=\alpha + \beta x^3 , \quad 0 < x \le 3$$

- (i) Find the values of β and α .
- (ii) Show that E(X) = 2.25, and find the standard deviation σ of X.

[Ans: (i) 1,
$$\frac{-1}{27}$$
 (ii) 0.581]

25. The p·d·f of r·v **X** is given by

$$f(x) = \begin{cases} \beta x(16 - x^2) & , & 0 \le x \le 4 \\ 0 & , & \text{otherwise} \end{cases}$$

Find the:

- (i) value of β
- (ii) mode of X
- (iii) mean of X

[Ans: (i)
$$\frac{1}{64}$$
 (ii) 2.3094 (iii) $\frac{32}{15}$]

26. A $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval [2, 6]. Find

$$(i)\,P(X\,\geq\!2\!\cdot\!9/X\,\leq\!3\!\cdot\!5)$$

(ii) the variance of X

[Ans: (i)
$$0.4$$
 (ii) $\frac{4}{3}$]

27. A continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ has the following $\mathbf{p} \cdot \mathbf{d} \cdot \mathbf{f}$.

$$f(x) = \begin{cases} 2-4x & , & 0 \le x \le 0.25 \\ 1 & , & 0.25 < x \le 0.5 \\ 4x-1 & , & 0.5 < x \le 0.75 \\ 0 & , & otherwise \end{cases}$$

- (a) Sketch f(x), hence deduce the mean, μ and median of X.
- (b) Find:
 - (i) the cumulative distribution function of **X**.

(ii)
$$P(|X - \mu| \leq 0.2)$$

[Ans: (a)
$$0.375$$
, 0.375 b(ii) 0.4225]

28. The cumulative distribution of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is such that:

$$F(x) = \begin{cases} 0 & , & x \le 1 \\ \frac{1}{12}(x-1)^2 & , & 1 < x \le 3 \\ \frac{1}{24}(14x-x^2-25) & , & 3 < x \le 7 \\ 1 & , & x > 7 \end{cases}$$

Find:

(i)
$$P(2 \cdot 8 < X < 5 \cdot 2)$$

- (ii) the median of X
- (iii) the $p \cdot d \cdot f$ of **X** and sketch it.
- (iv) the standard deviation of X.

[Ans: (i)
$$0.595$$
 (ii) 3.45 (iv) 1.2472]

- 29. The number of boats X crossing a river is uniformly distributed between 30 and 110 boats. Find the:
 - (i) probability that at least 90 boats cross the river.
 - (ii) expected number of boats to cross the river.
 - (iii) standard deviation for the number of boats to cross the river.
 - (iv) probability that X lies within one standard deviation of the mean.
 - (v) upper quartile for the number of boats to cross the river.
 - (vi) 25th percentile for the number of boats to cross the river.
 - (vii) cumulative distribution function of X and sketch it.

30. The p·d·f of r·v \mathbf{X} is given by

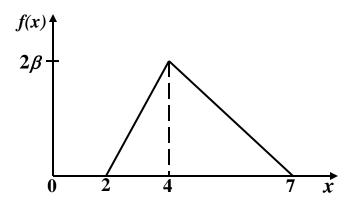
$$f(x) = \begin{cases} \beta x(3x - x^2) & , & 0 \le x \le 3 \\ 0 & , & \text{otherwise} \end{cases}$$

Find the:

- (i) value of β
- (ii) mode of X
- (iii) mean of X

[Ans: (i)
$$\frac{4}{27}$$
 (ii) 2 (iii) 1.8]

31. The p·d·f f(x) of a $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ takes on the form shown in the sketch below:



Find the:

- (i) value of β
- (ii) equations of the $p \cdot d \cdot f$
- (iii) median of X.

32. The weekly demand for petrol **X** in thousands of units at the petrol station is given by the $p \cdot d \cdot f$

$$f(x) = \begin{cases} \beta x(\lambda - x) & , & 0 \le x \le 1 \\ 0 & , & \text{otherwise} \end{cases}$$

- (i) Given that the mean weekly demand is 625 units, find the values of β and λ . Hence obtain the mode of X.
- (ii) If every week the petrol station stocks **750** units of petrol, find the probability that in a given week the petrol station will be unable to meet the demand for petrol.
- (iii) Find the amount of petrol that should be stocked in order to be 85.05% certain that the demand for petrol in that week will be met.

33. A r·v **X** has the following p·d·f.

$$f(x) = \begin{cases} \frac{2}{3a}(x+a) & , -a \le x \le 0 \\ \frac{1}{3a}(2a-x) & , 0 < x < 2a \\ 0 & , \text{ otherwise} \end{cases}$$

Find:

- (i) the value of **a**.
- (ii) the expressions for $P(X \le x)$ and sketch it
- (iii) the median of X.
- (iv) $P(X \le 1.5/X \ge 0)$

34. A r·v **X** has the following p·d·f.

$$f(x) = \begin{cases} \frac{1}{3a}(x+2) & , -a \le x \le 1\\ \frac{1}{a}(2-x) & , 1 \le x \le a\\ 0 & , \text{ otherwise} \end{cases}$$

Find:

- (i) the value of a.
- (ii) $P(X \leq 0)$
- (iii) the lower quartile of X.

[Ans: (i) 2 (iii)
$$\frac{1}{3}$$
 (iii) -0.2679]

35. A continuous $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$

$$f(x) = \begin{cases} \lambda \sin x, & 0 \le x \le \pi \\ 0, & \text{otherwise} \end{cases}$$

Find:

(i) the value of λ .

(ii)
$$P(X \geq \frac{\pi}{3})$$

(iii) the median of X.

[Ans: (i)
$$0.5$$
 (ii) 0.75 (iii) $\frac{\pi}{2}$]

36. A continuous $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$

$$f(x) = \left\{ egin{array}{ll} \lambda(1-\cos x) &, &0 \leq x \leq \frac{\pi}{2} \ \lambda \sin x &, &\frac{\pi}{2} \leq x \leq \pi \ 0 &, & ext{otherwise} \end{array}
ight.$$

- (a) Find:
 - (i) the value of λ .

(ii)
$$P\left(\frac{\pi}{3} < X < \frac{3\pi}{4}\right)$$

(b) Show that the mean, μ of the distribution is $1 + \frac{\pi}{4}$.

[Ans: (i)
$$\frac{2}{\pi}$$
 (ii) 0.6982]

37. A r·v **X** has the following p·d·f.

$$f(x) = \begin{cases} \lambda \cos x &, \quad 0 \le x \le \frac{\pi}{4} \\ \lambda \sin x &, \quad \frac{\pi}{4} \le x \le \frac{\pi}{2} \\ 0 &, \quad \text{otherwise} \end{cases}$$

Find:

(i) the value of λ , hence sketch f(x).

(ii)
$$P\left(x \geq \frac{\pi}{4}/0 \leq x \leq \frac{\pi}{3}\right)$$

(iii) the mean of X.

[Ans: (i)
$$\frac{\sqrt{2}}{2}$$
 (ii) 0.2265 (iii) $\frac{\pi}{4}$]

38. The cumulative distribution of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is such that:

$$F(x) = \begin{cases} 0 & , x < 0 \\ \beta \sin^{-1}x & , 0 \le x \le 1 \\ \lambda \tan^{-1}x & , 1 \le x \le \sqrt{3} \\ 1 & , x > \sqrt{3} \end{cases}$$

- (a) Find:
 - (i) the values of λ and β .
 - (ii) P(0.5 < X < 1.5)
 - (iii) the p·d·f of X.
- (b) Show that the mean, μ of the distribution is $\frac{3}{2\pi}[1 + \text{In 2}]$

[Ans: (i)
$$\frac{3}{\pi}$$
, $\frac{3}{2\pi}$ (ii) 0.6885]

39. A r·v \mathbf{X} has the following cumulative distribution function.

$$\mathbf{F}(\mathbf{x}) = \begin{cases} 0 & , & x < 1 \\ \beta(\mathbf{x}^2 - \mathbf{x}) & , & 1 \le x \le 2 \\ \lambda(\mathbf{x}^2 + \mathbf{x}) & , & 2 < x \le 3 \\ 1 & , & x > 3 \end{cases}$$

Find:

(i) the values of λ and β .

- (ii) the $p \cdot d \cdot f$ of X
- (iii) the mean, μ of X.

(iv) P(
$$|X - \mu| \le 0.5$$
)

[Ans: (i)
$$\frac{1}{12}$$
, $\frac{1}{4}$ (ii) 2.0556 (iii) 0.5412]

40. The p·d·f of a $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is given by:

$$f(x) = \begin{cases} \frac{\lambda}{x^2 + 1} & \text{, } 0 \le x \le 1\\ 0 & \text{, otherwise} \end{cases}$$

Show that the:

(i) value of
$$\lambda = \frac{4}{\pi}$$
.

(ii)
$$P(X \ge \frac{1}{\sqrt{3}}) = \frac{1}{3}$$
.

(iii)
$$\mathbf{E}(\mathbf{X}) = \frac{2\mathbf{In2}}{\pi}$$
.

(iv) median of the distribution is $\tan \frac{\pi}{8}$

41. The cumulative distribution of a continuous $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is given by:

$$F(x) = \begin{cases} 0, & x < 0 \\ \beta tan^{-1}x, & 0 \le x \le \sqrt{3} \\ 1, & x > \sqrt{3} \end{cases}$$

- (a) Find:
 - (i) the value of β .
 - (ii) P(X > 1)
- (b) Show that the:
 - (i) median of X is $\tan \frac{\pi}{6}$.
 - (ii) 75th percentile of X is $\tan \frac{\pi}{4}$.
- (c) By stating the p·d·f of X, show that $E(X) = \frac{3In2}{\pi}$.
- **42.** The times of arrival of a bus at its stage are uniformly distributed between the interval **9:00am** to **2:00pm**. Find the:
 - (i) mean and variance of the bus's time of arrival
 - (ii) probability that the time of arrival does not exceed 1:00pm.

[Ans: (i) 11.5h,
$$\frac{25}{12}$$
 (iii) 0.8]

- **43.** A $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $[\mathbf{a}, \mathbf{b}]$.
 - (a) State the $p \cdot d \cdot f$ of X and sketch it.
 - (b) Show that the lower quartile of X is $\frac{3a + b}{4}$ and the upper is $\frac{a + 3b}{4}$.

44. A $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$

$$f(x) = \begin{cases} \beta x & \text{, } 1 \le x \le 3 \\ \lambda(4-x) & \text{, } 3 < x \le 4 \\ 0 & \text{, otherwise} \end{cases}$$

- (a) Sketch f(x)
- (b) Find:
 - (i) the values of β and λ
 - (ii) the mean of X

(iii)
$$P(3 \le X \le 4/X > 2)$$

[Ans: b(i)
$$\frac{2}{11}$$
, $\frac{6}{11}$ (ii) 2.4848 (iii) 0.375]

45. A continuous $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$.

$$f(x) = \begin{cases} \frac{x}{3} - \frac{2}{3} & , & 2 \le x \le 3 \\ \lambda & , & 3 < x \le 5 \\ 2 + \beta x & , & 5 < x \le 6 \\ 0 & , & \text{otherwise} \end{cases}$$

- (a) Find the values of λ and β
- (b) Sketch f(x), hence deduce the mean, μ of X.
- (c) Find the:
 - (i) variance of X.
 - (ii) E(3X) and Var(3X)

[Ans: (a)
$$\frac{1}{3}$$
, $-\frac{1}{3}$ (b) 4 c(i) $\frac{101}{6}$ (ii) 12, 151.5]

46. The mass \mathbf{X} \mathbf{kg} of maize flour produced per hour is modeled by a continuous r·v whose p·d·f is given by:

$$f(x) = \begin{cases} \lambda(4-x^2) & \text{, } 0 \le x \le 2 \\ 0 & \text{, otherwise} \end{cases}$$

- (a) Find the:
 - (i) value of λ
 - (ii) mean mass produced per hour
- (b) Given that maize flour is sold at £ 8 per kg and the cost of running the production is £ 1 per hour, find the:
 - (i) expected profit per hour.
 - (ii) probability that in an hour the profit will exceed £ 11.

[Ans: a(i)
$$\frac{3}{16}$$
 (ii) $\frac{3}{4}$ b(i) £ 5 (ii) 0.0859]

- **47.** A r·v X is uniformly distributed over the interval $a \le X \le b$. Given that X is distributed with mean 9 and variance 12, find:
 - (i) the values of **a** and **b**.
 - (ii) $P(X \le 10)$

[Ans: (i) 3, 15 (ii)
$$\frac{7}{12}$$
]

- **48.** A $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $[\mathbf{a}, \mathbf{b}]$.
 - (a) State the $p \cdot d \cdot f$ of X and sketch it.

(b) Show that
$$P(x_1 \le X \le x_2) = \frac{x_2 - x_1}{b - a}$$

49. A continuous $r \cdot v \mathbf{X}$ has the following $p \cdot d \cdot f$

$$f(x) = \begin{cases} \lambda x(3-x), & 0 \le x \le 2 \\ \lambda(4-x), & 2 \le x < 4 \\ 0, & \text{otherwise} \end{cases}$$

Find:

- (i) the value of λ .
- (ii) the mean of X.
- (iii) the cumulative distribution function of X.
- (iv) $P(1 \le X \le 3)$

[Ans: (i)
$$\frac{3}{16}$$
 (ii) 1.75 (iv) 0.6875]

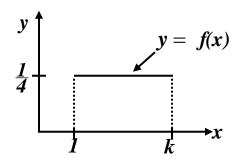
50. The lifetime X in years of an electric bulb is a r·v X with the following p·d·f

$$f(x) = \begin{cases} \lambda x(5-x), & 0 \le x \le 5 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the:
 - (i) value of λ .
 - (ii) mean of X.
- **(b)** If two such new bulbs are sold, find the probability that:
 - (i) both bulbs fail to work within one year.
 - (ii) only one bulb works for more than three years.

[Ans: (a) (i)
$$\frac{6}{125}$$
 (ii) 2.5 (b) (i) 0.0108 (ii) 0.4562]

51. A uniformly distributed $\mathbf{r} \cdot \mathbf{v} X$ has the following $\mathbf{p} \cdot \mathbf{d} \cdot \mathbf{f} f(x)$:

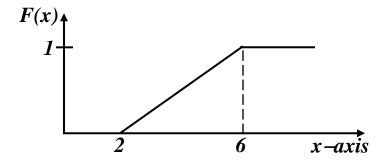


Find the:

- (i) value of k
- (ii) equations of the p·d·f of X
- (iii) variance of X

[Ans: (i) 5 (iii)
$$\frac{4}{3}$$
]

52. The cumulative distribution function of a continuous $r \cdot v X$ is illustrated as follows:



Find:

- (i) the $p \cdot d \cdot f$ of **X** and sketch it.
- (ii) the mean and variance of X.
- (iii) $P(X \ge 3/X < 5)$

[Ans: (ii) 4,
$$\frac{4}{3}$$
 (iii) $\frac{2}{3}$]